Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dong-Dong Lin and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.084$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of diaquabis(vanillinato- $\kappa^{2} O, O^{\prime}$)cobalt(II)

The structure of the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, has been redetermined in the space group $C 2 / c$. The original report [Xiao, Lan, Zhang \& Jiang (2002). Guangxi Shifan Daxue Xuebao Ziran Kexueban (J. Guangxi Normal Univ.), 20, 81-83] declared the space group to be $C c$. The molecule lies on a twofold axis; the vanillinate anion chelates to the $\mathrm{Co}^{\mathrm{II}}$ atom through the methoxy and hydroxy groups. The Co$\mathrm{O}_{\text {methoxy }}$ bond is longer than the $\mathrm{Co}-\mathrm{O}_{\text {hydroxy }}$ bond by 0.2673 (18) Å.

Comment

The title complex, (I), was previously refined in the lower symmetry space group Cc (Xiao et al., 2002). A PLATON check (Spek, 2003) suggests additional symmetry, as shown in this report.

(I)

The molecular structure of (I) is illustrated in Fig. 1. In C2/c, the molecule has a twofold axis of symmetry on which the $\mathrm{Co}^{\mathrm{II}}$ atom lies. The twofold symmetry element relates one vanillinate ligand and one coordinated water molecule to the other. The vanillinate anion chelates to the $\mathrm{Co}^{\mathrm{II}}$ atom through the methoxy and hydroxy groups, the $\mathrm{Co}-\mathrm{O}_{\text {methoxy }}$ bond being longer than the $\mathrm{Co}-\mathrm{O}_{\text {hydroxy }}$ bond by 0.2673 (18) \AA. Two water molecules coordinate in a cis manner to the $\mathrm{Co}^{\mathrm{II}}$ atom to complete the distorted octahedral coordination geometry (Table 1). The vanillinate ligand is planar, the maximum deviation being 0.0702 (14) \AA (O1 atom); the Co atom is out-of-plane by 0.6368 (14) \AA.

Experimental

An ethanol solution (5 ml) of vanillin (2 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1 mmol) was mixed with an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 mmol), and the mixture was refluxed for 1 h . After cooling to room

Received 12 August 2005 Accepted 16 August 2005 Online 20 August 2005
temperature, the solution was filtered. Red crystals of (I) were obtained after 3 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=397.23$
Monoclinic, $C 2 / c$
$a=22.270(2) \AA$
$b=10.4487(12) \AA$
$c=7.7771(9) \AA$
$\beta=107.249(12)^{\circ}$
$V=1728.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.527 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6807 reflections
$\theta=3.2-26.0^{\circ}$
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, red
$0.40 \times 0.38 \times 0.30 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.672, T_{\text {max }}=0.738$
7677 measured reflections

Refinement

Refinement on F^{2}
1973 independent reflections
1798 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-27 \rightarrow 28$
$k=-13 \rightarrow 13$
$l=-10 \rightarrow 10$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$S=1.09$
1973 reflections
115 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0446 P)^{2}\right. \\
&+1.1767 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Co}-\mathrm{O} 2$	$2.0415(13)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.382(2)$
$\mathrm{Co}-\mathrm{O} 3$	$2.2631(13)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.408(3)$
$\mathrm{Co}-\mathrm{O} 4$	$1.9958(12)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.311(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.222(3)$		
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 2^{\mathrm{i}}$	$92.02(8)$	$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 4$	$97.28(5)$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 3$	$172.33(5)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$92.27(8)$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$88.37(6)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{O} 4^{\mathrm{i}}$	$158.32(8)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2A $\cdots \mathrm{O} 1^{\mathrm{ii}}$	0.85	1.88	$2.733(2)$	173
$\mathrm{O}^{\mathrm{iii}}-\mathrm{H} 2 B \cdots \mathrm{O} 4^{2}$	0.88	1.85	$2.7158(19)$	165

Symmetry codes: (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x+1,-y,-z+1$.
H atoms on the water molecule were located in a difference Fourier map and refined as riding in their as-found positions relative to the O atom, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Methyl H atoms were placed in calculated positions and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=$

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: (i) $1-x, y$, $\frac{1}{2}-z$.]
$0.93 \AA$ and included in the final cycles of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); method used to solve structure: averaging the coordinates of the published $C c$ structure (Xiao et al., 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 20443003).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xiao, Y., Lan, C.-L., Zhang, S.-H. \& Jiang, Y.-M. (2002). Guangxi Shifan Daxue Xuebao Ziran Kexueban (J. Guangxi Normal Univ.), 20, 81-83. (In Chinese.)

