Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Dong Lin and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.003 Å R factor = 0.032 wR factor = 0.084 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Redetermination of diaquabis(vanillinato- $\kappa^2 O, O'$)cobalt(II)

The structure of the title complex, $[Co(C_8H_7O_3)_2(H_2O)_2]$, has been redetermined in the space group C2/c. The original report [Xiao, Lan, Zhang & Jiang (2002). *Guangxi Shifan Daxue Xuebao Ziran Kexueban (J. Guangxi Normal Univ.)*, **20**, 81–83] declared the space group to be *Cc*. The molecule lies on a twofold axis; the vanillinate anion chelates to the Co^{II} atom through the methoxy and hydroxy groups. The Co– $O_{methoxy}$ bond is longer than the Co– $O_{hydroxy}$ bond by 0.2673 (18) Å.

Comment

The title complex, (I), was previously refined in the lower symmetry space group Cc (Xiao *et al.*, 2002). A *PLATON* check (Spek, 2003) suggests additional symmetry, as shown in this report.

The molecular structure of (I) is illustrated in Fig. 1. In C2/c, the molecule has a twofold axis of symmetry on which the Co^{II} atom lies. The twofold symmetry element relates one vanillinate ligand and one coordinated water molecule to the other. The vanillinate anion chelates to the Co^{II} atom through the methoxy and hydroxy groups, the Co $-O_{methoxy}$ bond being longer than the Co $-O_{hydroxy}$ bond by 0.2673 (18) Å. Two water molecules coordinate in a *cis* manner to the Co^{II} atom to complete the distorted octahedral coordination geometry (Table 1). The vanillinate ligand is planar, the maximum deviation being 0.0702 (14) Å (O1 atom); the Co atom is out-of-plane by 0.6368 (14) Å.

Experimental

An ethanol solution (5 ml) of vanillin (2 mmol) and Na_2CO_3 (1 mmol) was mixed with an aqueous solution (5 ml) of $CoCl_2 \cdot 6H_2O$ (1 mmol), and the mixture was refluxed for 1 h. After cooling to room

Received 12 August 2005 Accepted 16 August 2005 Online 20 August 2005

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

temperature, the solution was filtered. Red crystals of (I) were obtained after 3 d.

> $D_x = 1.527 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 6807 reflections $\theta = 3.2 - 26.0^{\circ}$

 $\mu = 1.03~\mathrm{mm}^{-1}$ T = 295 (2) K

 $0.40 \times 0.38 \times 0.30$ mm

1973 independent reflections

1798 reflections with $I > 2\sigma(I)$

Prism, red

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -27 \rightarrow 28$ $k = -13 \rightarrow 13$

 $l = -10 \rightarrow 10$

Crystal data

$[Co(C_8H_7O_3)_2(H_2O)_2]$
$M_r = 397.23$
Monoclinic, $C2/c$
a = 22.270 (2) Å
b = 10.4487 (12) Å
c = 7.7771 (9) Å
$\beta = 107.249 \ (12)^{\circ}$
V = 1728.3 (3) Å ³
Z = 4
Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.672, T_{\max} = 0.738$
7677 measured reflections

Refinement

Refinement $R[F^2 > 2\sigma(x)]$ $wR(F^2) = 0$ S = 1.091973 reflect 115 parame H-atom parameters constrained

t on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2]$
F^2] = 0.032	+ 1.1767 <i>P</i>]
0.084	where $P = (F_o^2 + 2F_c^2)/3$
	$(\Delta/\sigma)_{\rm max} < 0.001$
tions	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
eters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co-O2	2.0415 (13)	O3-C3	1.382 (2)
Co-O3	2.2631 (13)	O3-C8	1.408 (3)
Co-O4	1.9958 (12)	O4-C4	1.311 (2)
O1-C7	1.222 (3)		
O2-Co-O2 ⁱ	92.02 (8)	O2-Co-O4	97.28 (5)
O2-Co-O3	172.33 (5)	O3-Co-O3 ⁱ	92.27 (8)
O2-Co-O3 ⁱ	88.37 (6)	O4-Co-O4 ⁱ	158.32 (8)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} O2 - H2A \cdots O1^{ii} \\ O2 - H2B \cdots O4^{iii} \end{array}$	0.85 0.88	1.88 1.85	2.733 (2) 2.7158 (19)	173 165
Symmetry codes: (ii)	(-1) - y + 1 = 7	$-\frac{1}{1}$ (iii) $-r +$	1 - y - z + 1	

Symmetry codes: (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

H atoms on the water molecule were located in a difference Fourier map and refined as riding in their as-found positions relative to the O atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. Methyl H atoms were placed in calculated positions and refined with $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in calculated positions with C-H =

The molecular structure of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z.$]

0.93 Å and included in the final cycles of refinement in the riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); method used to solve structure: averaging the coordinates of the published Cc structure (Xiao et al., 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 20443003).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Xiao, Y., Lan, C.-L., Zhang, S.-H. & Jiang, Y.-M. (2002). Guangxi Shifan Daxue Xuebao Ziran Kexueban (J. Guangxi Normal Univ.), 20, 81-83. (In Chinese.)